
CMPT 476/981: Introduction to Quantum Algorithms

Assignment 2

Due March 14th, 2024 at 11:59pm on coursys
Complete individually and submit in PDF format.

Question 1 [4 points]: Gate approximation

Recall that the approximation error E(U, V ) of two unitaries U, V is defined as

E(U, V ) = ||U − V || = max
|ψ⟩

||(U − V )|ψ⟩||

where the max above is over pure states |ψ⟩ — that is, unit vectors.

1. Prove that approximation error is subadditive — that is, show that for any gates U1, U2, V1, V2,

E(U2U1, V2V1) ≤ E(U2, V2) + E(U1, V1)

You may use without proof two facts: the triangle inequality ||A + B|| ≤ ||A|| + ||B|| and
||UA|| = ||A|| = ||AU || for any unitary U and complex valued matrix A.

2. Suppose you have a circuit U1 · · ·Uk consisting of k gates and you wish to approximate over
some particular gate set to an error of ϵ. What approximation factor should you choose for
each gate?

Question 2 [2 points]: Controlled gates

Recall that a (quantum) controlled unitary is drawn as

•

U

where the dot represents the control, and U is applied only when the control bit is in the state |1⟩.

1. Verify that the following gives a controlled U gate for any unitary U :

|0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ U

2. Use the above expression to write the following circuit as a matrix

•

H
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Question 3 [2 points]: Deferred measurement

A classically controlled gate Ux, x ∈ {0, 1} is a gate U which is applied if and only if the value
of a classical (i.e. not in superposition) bit is 1. We’ve seen examples of classically controlled
gates in class, with the superdense coding and teleportation protocols. In the case where x is a
measurement outcome, we often draw the gate classically controlled on the x as

X

Here the double line denotes a classical bit, which is controlling whether or not to apply the X gate.

Show that every gate controlled on a measurement outcome is equivalent to a quantum controlled
gate followed by a measurement. In circuit diagrams,

U

=
•

U

Question 4 [3 points]: Reversible circuits

Devise a reversible circuit composed of X, CNOT , and Toffoli gates computing the following
function:

f(x1, x2, x3, x4, x5) = (x1 ⊕ (x2 ∧ x3)⊕ x4) ∧ (x4 ⊕ x5 ∧ (¬x1 ∧ x2)))
Your circuit should uncompute any temporary/intermediate values it uses.

Question 5 [3 points]: No garbage on Sundays

Suppose you have an oracle Uf : |x⟩|0⟩ 7→ |x⟩|f(x)⟩ for some classical function f : {0, 1} → {0, 1}.
1. Give an explicit function f for which Uf (

1√
2

∑
x∈{0,1} |x⟩|0⟩) is an entangled state.

2. Let f be the function you showed was entangling in the last question. Show that measurement
of the second qubit after applying U changes the state of the first qubit.

3. Suppose f(x) is some intermediate value which we only needed temporarily in a larger com-
putation. Why shouldn’t we simply reset |f(x)⟩ to |0⟩ or |1⟩ by measuring it in order to
re-use it later?

Question 6 [5 points]: Bernstein-Vazirani

Recall that the Bernstein-Vazirani algorithm computes the shift string s ∈ Zn2 hidden in some
function f : Zn2 → Z2 where

f(x) = s · x = s1x1 ⊕ s2x2 ⊕ · · · ⊕ snxn

using an oracle Uf : |x⟩|0⟩ 7→ |x⟩|f(x)⟩ (or its phase version, Uf̃ : |x⟩ 7→ (−1)f(x)|x⟩)

Let n = 6 and s = 010111.
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1. Give an implementation of the oracle Uf using CNOT gates.

2. Give an implementation of the oracle Uf̃ . You may use any of the following: the oracle Uf ,
H, Z gates or ancillas initialized in |0⟩ or |1⟩.

3. Could the value of s be computed in polynomial time on a classical computer from your
implementation of either Uf or Uf̃? Do you think query complexity is a good characterization
of the problem in this case? What if instead Uf was any polynomial-sized oracle for f over
the gate set consisting of X, CNOT , and Toffoli gates, with no other gaurantees about its
structure?

Question 7 [6 points]: Simon’s algorithm

Perform Simon’s algorithm on the 3-bit function f : {0, 1}3 → {0, 1}3 defined as

f(a, b, c) = (b(¬a)⊕ b(¬c), b(¬a⊕ c), a⊕ c).

Specifically, do the following steps:

1. Write down the uniform superposition over values f(x),

1√
2n

∑
x∈{0,1}3

|x⟩|f(x)⟩.

2. Simulate measuring the output register |f(x)⟩ by choosing some value of c = f(x) that appears
with non-zero amplitude in the above.

3. Apply H⊗3 to the |x⟩ register to get find the state

1√
|S⊥|

∑
z∈S⊥

(−1)x·z|z⟩|f(x)⟩

4. Take samples of |z⟩ from the above until you have n − 1 = 2 linearly independent vectors
from S⊥.

5. Solve the linear system As = 0 for s, where A is the matrix with rows given by the linearly
independent vectors you previously sampled. This is your hidden string.
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